Additive and multiplicative duals for American option pricing
نویسندگان
چکیده
We investigate and compare two dual formulations of the American option pricing problem based on two decompositions of supermartingales: the additive dual of Haugh and Kogan (Oper. Res. 52:258–270, 2004) and Rogers (Math. Finance 12:271–286, 2002) and the multiplicative dual of Jamshidian (Minimax optimality of Bermudan and American claims and their MonteCarlo upper bound approximation. NIB Capital, The Hague, 2003). Both provide upper bounds on American option prices; we show how to improve these bounds iteratively and use this to show that any multiplicative dual can be improved by an additive dual and vice versa. This iterative improvement converges to the optimal value function. We also compare bias and variance under the two dual formulations as the time horizon grows; either method may have smaller bias, but the variance of themultiplicativemethod typically growsmuch faster than that of the additive method. We show that in the case of a discrete state space, the additive dual coincides with the dual of the optimal stopping problem in the sense of linear programming duality and the multiplicative method arises through a nonlinear duality.
منابع مشابه
American Option Pricing of Future Contracts in an Effort to Investigate Trading Strategies; Evidence from North Sea Oil Exchange
In this paper, Black Scholes’s pricing model was developed to study American option on future contracts of Brent oil. The practical tests of the model show that market priced option contracts as future contracts less than what model did, which mostly represent option contracts with price rather than without price. Moreover, it suggests call option rather than put option. Using t hypothesis test...
متن کاملInvariant Option Pricing And
Part I proposes a numeraire-invariant option pricing framework. It defines an option, its price process, and such notions as option indistinguishability and equivalence, domination, payoff process, trigger option, and semipositive option. It develops some of their basic properties, including price transitivity law, indistinguishability results, convergence results, and, in relation to nonnegati...
متن کاملNumerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
متن کاملNumeraire-invariant Option Pricing & American, Bermudan, and Trigger Stream Rollover
Part I proposes a numeraire-invariant option pricing framework. It defines an option, its price process, and such notions as option indistinguishability and equivalence, domination, payoff process, trigger option, and semipositive option. It develops some of their basic properties, including price transitivity law, indistinguishability results, convergence results, and, in relation to nonnegati...
متن کاملEuropean option pricing of fractional Black-Scholes model with new Lagrange multipliers
In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finance and Stochastics
دوره 11 شماره
صفحات -
تاریخ انتشار 2007